SMAT: An Attention-Based Deep Learning Solution to the Automation of Schema Matching
نویسندگان
چکیده
Schema matching aims to identify the correspondences among attributes of database schemas. It is frequently considered as most challenging and decisive stage existing in many contemporary web semantics systems. Low-quality algorithmic matchers fail provide improvement while manually annotation consumes extensive human efforts. Further complications arise from data privacy certain domains such healthcare, where only schema-level should be used prevent leakage. For this problem, we propose SMAT, a new deep learning model based on state-of-the-art natural language processing techniques obtain semantic mappings between source target schemas using attribute name description. SMAT avoids directly encoding domain knowledge about systems, which allows it more easily deployed across different sites. We also introduce benchmark dataset, OMAP, real-world healthcare domain. Our evaluation various datasets demonstrates potential help automate tasks.
منابع مشابه
An Improved Semantic Schema Matching Approach
Schema matching is a critical step in many applications, such as data warehouse loading, Online Analytical Process (OLAP), Data mining, semantic web [2] and schema integration. This task is defined for finding the semantic correspondences between elements of two schemas. Recently, schema matching has found considerable interest in both research and practice. In this paper, we present a new impr...
متن کاملAn Attention-Based Deep Net for Learning to Rank
In information retrieval, learning to rank constructs a machine-based ranking model which given a query, sorts the search results by their degree of relevance or importance to the query. Neural networks have been successfully applied to this problem, and in this paper, we propose an attention-based deep neural network which better incorporates different embeddings of the queries and search resu...
متن کاملan improved semantic schema matching approach
schema matching is a critical step in many applications, such as data warehouse loading, online analytical process (olap), data mining, semantic web [2] and schema integration. this task is defined for finding the semantic correspondences between elements of two schemas. recently, schema matching has found considerable interest in both research and practice. in this paper, we present a new impr...
متن کاملthe effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students
هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...
15 صفحه اولSchema Matching using Machine Learning
Schema Matching is a method of finding attributes that are either similar to each other linguistically or represent the same information. In this project, we take a hybrid approach at solving this problem by making use of both the provided data and the schema name to perform one to one schema matching and introduce creation of a global dictionary to achieve one to many schema matching. We exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-82472-3_19